Hybridization Efficiency of Molecular Beacons Bound to Gold Nanowires: Effect of Surface Coverage and Target Length
نویسندگان
چکیده
Surface-bound nucleic acid probes designed to adopt specific secondary structures are becoming increasingly important in a range of biosensing applications but remain less well characterized than traditional single-stranded probes, which are typically designed to avoid secondary structure. We report the hybridization efficiency for surface-immobilized hairpin DNA probes. Our probes are molecular beacons, carrying a 3' dye moiety and a 5' thiol for attachment to gold nanowires, which serve as both scaffolds for probe attachment and quenchers. Hybridization efficiency was dependent on probe surface coverage, reaching a maximum of ∼90% at intermediate coverages of (1-2) × 10(12) probes/cm(2) and dropping to ≤20% at higher or lower coverages. Fluorescence intensity did not track with the number of target molecules bound, and was highest for high probe coverage despite the lower bound targets per square centimeter. Backfilling with short thiolated oligoethylene glycol spacers increased hybridization efficiency at low hairpin probe coverages (∼(3-4) × 10(11) probes/cm(2)), but not at higher probe coverages (1 × 10(12)/cm(2)). We also evaluated the effect of target length by adding up to 50 nonhybridizing nucleotides to the 3' or 5' end of the complementary target sequence. Additional nucleotides on the 3' end of the complementary target sequence (i.e., the end near the nanowire surface) had a much greater impact on hybridization efficiency as compared to nucleotides added to the 5' end. This work provides guidance in designing sensors in which surface-bound probes designed to adopt secondary structures are used to detect target sequences from solution.
منابع مشابه
Hybridization and enzymatic extension of au nanoparticle-bound oligonucleotides.
We have investigated the impact of steric effects on the hybridization and enzymatic extension of oligonucleotides bound to 12-nm colloidal Au particles. In these experiments, a nanoparticle-bound 12-mer sequence is hybridized either to its solution phase 12-mer complement or to an 88-mer template sequence. The particle-bound oligonucleotide serves as a primer for enzymatic extension reactions,...
متن کاملA sandwich-like strategy for the label-free detection of oligonucleotides by surface plasmon fluorescence spectroscopy (SPFS)† †Electronic supplementary information (ESI) available: The optimization of the sensor chip preparation and performance, as well as further SPFS measurements. See DOI: 10.1039/c6an01129b Click here for additional data file.
For the detection of oligonucleotides a sandwich-like detection strategy has been developed by which the background fluorescence is significantly lowered in comparison with surface-bound molecular beacons. Surface bound optical molecular beacons are DNA hairpin structures comprising a stem and a loop. The end of the stem is modified with a fluorophore and a thiol anchor for chemisorption on gol...
متن کاملHybridization kinetics and thermodynamics of molecular beacons.
Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem-loop structure of molecular beacons provides a competing reaction for probe-target hybridization that serves to increase probe specificity, which is particularly useful when single-base discrimination is desired. To fully realize the potential of molecular beacons, it...
متن کاملMolecular identification of agrobacterium tumefaciens containing pCAMBIA 1305.2 plasmid using multiplex PCR and Gold nanoparticles multiplex probe
Conventional microbiology methods used to detect bacteria include multiple cultures and identification processes, so the results of lab work are painstaking and time-consuming. In recent years, more and more tend to use the diagnostic tests which are based on DNA; hence, DNA diagnostic biosensors have been created to perform DNA identification better. In this study, GUS and hpt genes were used ...
متن کاملMolecular identification of agrobacterium tumefaciens containing pCAMBIA 1305.2 plasmid using multiplex PCR and Gold nanoparticles multiplex probe
Conventional microbiology methods used to detect bacteria include multiple cultures and identification processes, so the results of lab work are painstaking and time-consuming. In recent years, more and more tend to use the diagnostic tests which are based on DNA; hence, DNA diagnostic biosensors have been created to perform DNA identification better. In this study, GUS and hpt genes were used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2010